
Regularized Saddle-Free Newton: Saddle Avoidance and

Efficient Implementation

by

Cooper R. Simpson

B.S., University of Colorado Boulder, 2019

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Masters of Science

Department of Applied Mathematics

2022

Committee Members:

Stephen Becker, Chair

Rafael Frongillo

Emilliano Dall’Anese

ii

Simpson, Cooper R. (M.S., Applied Mathematics)

Regularized Saddle-Free Newton: Saddle Avoidance and Efficient Implementation

Thesis directed by Prof. Stephen Becker

We present a new second-order method for unconstrained non-convex optimization, which we dub

Regularized Saddle-Free Newton (R-SFN). This work builds upon a number of recent ideas related to im-

proving the practical performance of the classic Newton’s method. In particular, we develop a nonlinear

transformation to the Hessian which ensures it is positive definite at each iteration by approximating the

matrix absolute value and regularizing with a scaled gradient norm. While our method applies to C2 objec-

tives with Lipschitz Hessian, our analysis will require the existence of a third continuous derivative. Given

this, we show that with an appropriately random initialization our method avoids saddle points almost

surely. Furthermore, the form of our nonlinear transformation facilitates an efficient matrix-free approach

to computing the update via Krylov based quadrature, making our method scalable to high dimensional

problems.

iii

Contents

Chapter

1 Introduction 1

1.1 A Motivating Example . 2

1.2 Related Work . 2

2 Analysis 5

2.1 Preliminaries . 5

2.2 Saddle Avoidance . 7

3 Efficient Computation 15

3.1 Numerical Experiments . 17

3.1.1 Efficiency . 18

3.1.2 Convergence . 19

4 Discussion 21

Bibliography 23

Appendix

A Matrix Derivative Results 25

B 1d Lipschitz Bound 28

iv

Tables

Table

1.1 Newton variants . 4

v

Figures

Figure

3.1 Comparison of execution time and memory consumption for Newton type methods. 18

3.2 Minimization of Rosenbrock function. 19

Chapter 1

Introduction

We consider the following unconstrained optimization problem:

min
x∈Rn

f(x) (1.1)

for a twice continuously differentiable function f : Rn → R, where we make no assumptions on the convexity

of f . To solve this problem we propose the following update rule:

x(k+1) = x(k) − α
((
∇2f(x(k))

)2
+ λ(k)I

)−1/2

∇f(x(k)) (1.2)

which we dub Regularized Saddle-Free Newton (R-SFN). The step-size α is a constant scalar, and for now

we only require that λ(k) is a scalar that could possibly depend on x(k), but we leave the form otherwise

unspecified.

Under a few further assumptions, and with a specific form of regularization, we will show that if a

sequence given by eq. (1.2) converges, then it almost surely converges to a second-order minimizer. We will

also provide details on an efficient implementation of eq. (1.2) by computing the update via Krylov based

quadrature, and we will investigate its performance experimentally.

A key tool for our analysis, and the fundamental equation behind our efficient implementation is given

by the following integral representation of the matrix inverse square root:

A−1/2 =
2

π

∫ ∞

0

(
t2I+A

)−1
dt (1.3)

which holds for A ∈ Rn×n with no eigenvalues on R−. This is easily derived from the integral representation

of the matrix square root [7].

2

1.1 A Motivating Example

Consider the following two dimensional quadratic:

f(x) = x2
1 − x2

2

This function is unbounded below, and so has no minima, but it does have a saddle point at (0, 0). The

gradient and the Hessian are easily computed, so we can write out the form of the Newton update as follows:

x(k+1) = x(k) −

1/2 0

0 −1/2

2x
(k)
1

−2x(k)
2

 = x(k) − x(k) = 0

Thus we see that Newton’s method converges in a single step to the saddle point from any initialization.

This is perhaps encouraging because we see extremely fast convergence, but discouraging because this is

not a minimum. Well, there is no minimum, but we would at least like to see behaviour that reduces the

function value. If we make a minor modification and take the absolute value of the Hessian eigenvalues, we

instead get the following result:

x(k+1) = x(k) −

1/2 0

0 1/2

2x
(k)
1

−2x(k)
2

 =

0

2x
(k)
2

In this case, the saddle point is avoided if the initial iterate is not chosen on the (x1, 0) plane, and we can

observe that a fast rate of “convergence” is preserved.

This example highlights the extremes of Newton’s method, and seems to suggest that a simple modi-

fication could eliminate its issues. It also makes clear the necessity of an almost sure type argument, or the

introduction of other mechanics to the iteration to avoid cases like an initialization of (x1, 0).

1.2 Related Work

Second order optimization methods have long been a focus of research due to their potential for

fast convergence. The canonical example is Newton’s method, which under mild conditions enjoys local

quadratic convergence, but for which there is no known global convergence result. A number of effective

3

Newton variants have been established, aimed at improving different aspects of the standard version. Trust-

Region Newton and Cubic Newton are two notable methods which both achieve fast global convergence.

Recent work by [11] and [3] showed that an appropriately regularized Newton’s method will converge at

least sub-linearly for a convex objective function from any global initialization.

A naive application of Newton’s method may prove to be quite ineffective. In particular, for non-

convex objectives, the Hessian is no longer positive definite. Thus, the Newton update is not a descent

direction, which can result in convergence to saddle points. It has been noted in the literature for a long

time (see [14]) that this issue may be mitigated by taking the absolute value of the Hessian, i.e. taking

the absolute value of the Hessian eigenvalues. The work of [2] popularized this idea for deep learning, and

dubbed their method Saddle-Free Newton (SFN). While this work showed promising empirical results and

gave some intuition as to why this approach may be valid, there was still no solid theory backing it up.

Continuing to employ the absolute value of the Hessian, [17] introduced the Non-Convex Newton

method. In addition to using the matrix absolute value, sufficiently small eigenvalues are replaced with a

constant, and small amounts of noise are added in certain scenarios. This technique then allows them to

show avoidance of saddle points and global convergence. The works of [9] and [16] established almost sure

avoidance of saddle points for gradient descent using the stable manifold theorem. We will employ this

same method in our analysis. Perhaps the most similar to our work here is the unpublished report of [22].

There, the authors consider what is essentially Saddle-Free Newton with a randomized regularization term,

and attempt to show saddle avoidance using the stable manifold theorem. Our work differs in a number

of ways. First, our methods are fundamentally different despite having similar inspiration, and thus they

require different analysis. Second, our analysis is both more robust and more general. Third, our method

admits an efficient implementation, whereas theirs suffers from the same issues as SFN.

Another issue with Newton’s method and its variants comes in their implementation. In the standard

Newton’s method one is required to invert a potentially huge matrix, and things only get worse in the saddle-

free variant. In order to apply the absolute value, most methods decompose the matrix first and then apply

the absolute value to the eigenvalues. When it comes to high-dimensional optimization, this can completely

4

prevent the practical use of these methods. The Low-Rank Saddle-Free Newton method introduced in [15]

attempts to circumvent this issue by using a low-rank approximation to the Hessian. A matrix-free technique

is given by [1], where they compute the absolute value as the square root of the squared matrix via a specific

ODE.

Broadly, one may consider an update of the following form:

x(k+1) = x(k) − α(k)
(
B(k)

)−1∇f(x(k)) (1.4)

where Bk is a matrix that depends on the point xk.

B(k) Method Details

∇2f(x(k)) Newton N/A

∇2f(x(k)) + λ(k)I Regularized Newton [11], [3] Convex objective

|∇2f(x(k))| Saddle-Free Newton [2] N/A

|∇2f(x(k))|r + γI Low Rank Saddle-Free Newton [15] Rank-r approximation

∣∣∇2f(x(k))|m Non-Convex Newton [17] Small eigenvalues replaced by m

((
∇2f(x(k))

)2
+ λ(k)I

)1/2

Regularized Saddle-Free Newton (Ours) N/A

Table 1.1: Newton variants

Our method can be seen as a combination of regularized Newton and saddle-free Newton, although

from this one might expect B(k) = |∇2f(x(k))| + λ(k)I. Indeed in some sense this would be ideal, but

the necessity for our approximation to this will be made apparent in chapter 3 when we discuss efficient

computation. Among the saddle-free methods one may note that the all bound the smallest magnitude

eigenvalue in some manner, whether this is via regularization or truncation.

Chapter 2

Analysis

In this chapter we will give a theoretical analysis of R-SFN’s saddle avoidance properties. Here,

in section 2.1, we will begin by introducing some necessary background, discuss notation, and state our

assumptions. Section 2.2 will then detail the main result of this paper: almost sure avoidance of saddle

points.

2.1 Preliminaries

Throughout, we will use lowercase bold letters to denote vectors, and uppercase bold letters to denote

matrices or matrix valued operators. A parenthetic superscript will indicate an iteration count. To make

things somewhat easier to parse we will also employ the following notation

• g = g(x) = ∇f(x), with g(k) = g(x(k))

• H = H(x) = ∇2f(x), with H(k) = H(x(k))

Unless otherwise specified, the norm we employ is the spectral norm, denoted as ∥ ·∥. As well, we will denote

the Jacobian operator as D, so that the following holds for a function ϕ : Rn → Rm:

[Dϕ(x)]ij =
∂ϕi

∂xj

for i = 1 . . . ,m and j = 1, . . . , n – given all such partial derivatives exist. We note that in order for a ϕ to be

considered differentiable at a point, the partial derivatives must also be continuous at that point, in which

case the Jacobian is the derivative [10].

6

Our saddle avoidance analysis will require the following assumptions:

Assumption 1

The Hessian, H, is M -Lipschitz, i.e. the following holds for all x,y ∈ Rn:

∥H(x)−H(y)∥ ≤M∥x− y∥

Assumption 2

The objective function f has a continuous third derivative, i.e., f ∈ C3.

Assumption 3

The regularization has the following form:

λ = 2M∥g∥+ ϵ

where ϵ > 0 is arbitrary.

It should be noted that the regularization in assumption 2 has an implicit dependence on x via the

gradient. Also, this assumption is not too strong of a requirement beyond assumption 1, as the latter implies

almost everywhere differentiability to begin with. Assumption 3 may look a bit strange, but we will see that

the extra ϵ term is quite necessary for our analysis.

Because the Hessian is a real symmetric matrix, it is orthogonally diagonalizable, so we may write

the following decomposition:

H = VΣVT (2.1)

where V is orthonormal, and Σ is a diagonal matrix consisting of the eigenvalues of H. We will denote these

eigenvalues as follows:

µ1 ≥ µ2 ≥ · · · ≥ µn

Often, for an optimization problem of the form eq. (1.1), the goal is to show convergence to the following:

7

Definition 1: Second-Order Stationary Point

A point xc ∈ Rn is a second-order stationary point if g(xc) = 0 and 0 ⪯ H(xc), i.e. xc is a critical

point where the Hessian is positive semi-definite.

Where the notation B ⪯ A, for symmetric matrices A and B, indicates A−B is positive semi-definite.

For a general saddle point, the smallest eigenvalue may be zero, in which case it is also a second-order

stationary point, so to distinguish between the two, we introduce the following:

Definition 2: Strict Saddle Point

A strict saddle point xs is a critical point, i.e. g(xs) = 0, where there is at least one direction of

negative curvature, so the smallest eigenvalue of H(xs) is strictly less than 0.

If it holds that all saddle points are strict, then convergence to a second-order stationary point is

convergence to a local minimum.

We will define the map associated with the R-SFN update rule (eq. (1.2)) as follows:

Φ(x;α) = x− α
(
H2 + λI

)−1/2
g︸ ︷︷ ︸

F(x)

= (I− αF)(x) (2.2)

where we note that the fixed points of Φ are exactly the critical points of f . This form of our method will

be useful for the forthcoming analysis. When the step-size is clear from the context or unspecified, we will

just write Φ(x).

2.2 Saddle Avoidance

The motivation behind using the absolute value of the Hessian is that it allows one to retain the

“appropriate” scaling of Newton’s method, while preventing the possibility for convergence to saddle points.

Our method uses an approximation to the absolute value, but in this section we will show that this saddle

avoidance behaviour indeed holds almost surely. Our analysis will follow that of [9] and [16] by employing

the following result:

8

Theorem 1: Stable Manifold [19, III.7]

Let xc be a fixed point for the Cr local diffeomorphism ϕ : U → Rn, where r ≥ 1 and U ⊂ Rn is a

neighborhood of xc. Let Es⊕Eu be the invariant splitting of Rn into the subspaces corresponding to

the eigenvalues of Dϕ(xc) less than or equal to 1, and greater than 1 respectively. Associated with Es

is a local ϕ invariant Cr embedded disc W (xc) ⊂ Es, and ball B around xc such that the following

hold:

ϕ(W (xc)) ∩B ⊂W (xc) and ϕk(x) ∈ B ∀k ≥ 0 =⇒ x ∈W (xc)

The final result says that a if a point x converges to the critical point xc under the map ϕ, then

that point must have originated in W (xc). This disc is referred to as the local stable center manifold of xc.

Because it is contained in the subspace associated with the eigenvalues of Dϕ(xc) that are less than or equal

to 1, it has the same dimension as that subspace. This will be a key fact moving forward.

To apply theorem 1, and for a few other key results, it will be necessary to have an explicit form

for the derivative DΦ, so we will derive this before proceeding any further. We refer the reader to [10] for

references on matrix calculus. We begin by using eq. (1.3) to write the R-SFN map (eq. (2.2)) as follows:

Φ(x) = x− 2α

π

∫ ∞

0

(
(t2 + λ)I+H2

)−1

g dt

Now let T(x) =
(
(λ+ t2)I+H2

)
and consider the following:

DΦ =
∂Φ

∂xT
= I− 2α

π

∫ ∞

0

∂

∂xT

[(
(t2 + λ)I+H2

)−1

g
]
dt

where we have swapped the integral and the derivative in the second term using the dominated convergence

theorem. From appendix A we have the following result:

∂
(
(t2 + λ)I+H2

)−1

g

∂xT
=

(
gT ⊗ I

)∂vec(T−1)

∂xT
+

(
1⊗T−1(x)

)∂vec(g)
∂xT

The first term simplifies according to the result in appendix A, and it is easy to see that the second term is

given by T−1H. Combining all of this together we get the following:

DΦ(x) = I− 2α

π

∫ ∞

0

T−1
(
I− cT−1ggT

)
H−

(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
dt (2.3)

9

where c = 2M∥g∥−1.

First, we will use eq. (2.3) to prove the following lemma. This will be key to using the stable manifold

theorem in a helpful way.

Lemma 1

For xs a strict saddle point, DΦ(xs) has at least one eigenvalue strictly larger than 1.

Proof

A saddle point is a critical point, so the gradient is zero, and thus eq. (2.3) reduces to the following:

DΦ(x) = I− 2α

π

∫ ∞

0

T−1H dt = I−H
(
H2 + ϵI

)−1/2

The three matrices involved are simultaneously diagonalizable, so we may write the following:

DΦ(xs) = V
(
I− αΣ

(
Σ2 + ϵI

)−1/2
)
VT

then the matrix above has eigenvalues of the following form for i = 1, . . . , n:

1− µiα√
µ2
i + ϵ

By assumption, at least µn is negative, which implies the following:

1− µnα√
µ2
n + ϵ

> 1

Thus the result holds. ▲

Next, we will use eq. (2.3) to prove the lemma below.

Lemma 2

The nonlinear operator F, from eq. (2.2), satisfies the following for all x,y ∈ Rn:

∥F(x)− F(y)∥ < 2∥x− y∥

10

Proof

Our approach will be to show that the norm of DF, which was derived for eq. (2.3) is bounded by

2, which immediately implies the result.

∥DF∥ ≤ 2

π

∫ ∞

0

∥T−1
(
I− cT−1ggT

)
H−

(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
∥ dt

≤ 2

π

∫ ∞

0

∥T−1
(
I− cT−1ggT

)
H∥+ ∥

(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
∥ dt

We can bound the second term in the integrand as follows (see appendix A):

∥
(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
∥ < µλ

(µ2 + t2 + λ)(µ2
min + t2 + λ)

where µ is defined as follows:

µ = max
µi

µi

µ2
i + t2 + λ

In other words, µ is the eigenvalue that maximizes the given fraction. Next, we consider the first

term in the integrand, which we rewrite as ∥T−2
(
T− cggT

)
H∥. Then we write the following:

∥T−2
(
T− cggT

)
H∥2 = ∥T−2

(
T− cggT

)
H2

(
T− cggT

)
T−2∥

This quantity is bounded above by ||T−1H2T−1|| = ||T−1H||2 if the following holds:

T−2(T− cggT)H2(T− cggT) ⪯ TH2T

Rearranging the LHS and cancelling terms we end up with the following:

0 ⪯ ggTH2T+
(
T− cggT

)
H2ggT

which holds because ∥cggT ∥ = λ and all the eigenvalues of T are of the form µ2
i + t2 + λ. Putting

our two pieces together we have the following bound:

∥DF∥ < 2

π

∫ ∞

0

µ

µ2 + t2 + λ
+

µλ

(µ2 + t2 + λ)(µ2
min + t2 + λ)

dt ≤ 2

π

∫ ∞

0

2µ

µ2 + t2 + λ
dt

Carrying out the integration we get our final result:

∥DF∥ < 2µ√
µ2 + λ

< 2

▲

11

This immediately implies the following two corollaries which will allow us to apply the stable manifold

theorem, and extend it to a global statement.

Corollary 1

The R-SFN map with step-size 1/2 is a local diffeomorphism.

Proof

Via the Inverse Function Theorem [21] the map Φ is a local diffeomorphism if the derivative at a

point x, DΦ(x), is a linear isomorphism. The first criterion is easily satisfied because DΦ(x) is a

matrix. From lemma 2 we know that the 1
2 ||DF(x)|| < 1, so we can conclude that the eigenvalues of

DΦ = I− 1
2F are strictly larger than 0. Thus, DΦ is invertible, so Φ is a local diffeomorphism. ▲

Corollary 2

The R-SFN map with step-size 1/2 is injective.

Proof

Let x,y ∈ Rn be given such that x ̸= y. Now assume that Φ(x) = Φ(y), which implies the following:

x− 1

2
F(x) = y − 1

2
F(y) =⇒ ∥x− y∥ = 1

2
∥F(x)− F(y)∥

Using the inequality from lemma 2 we can write the following:

∥x− y∥ < ∥x− y∥

which is clearly a contradiction. Thus we conclude that x = y, and the result holds. ▲

We will also state the following theorem as it is key to our analysis, and somewhat less known.

Theorem 2: Alexandroff [5, 1.12.8]

If ϕ : X → Y is a surjective open mapping from a separable locally compact metric space to a

separable metric space such that
∣∣ϕ−1(y)

∣∣ ≤ ℵ0 for all y ∈ Y , then dim(X) = dim(Y).

Now we move to the the main results of this section:

12

Theorem 3: Saddle Avoidance

The set of points in Rn that converge to a strict saddle point of f under the R-SFN map (eq. (2.2)),

with step-size 1/2, is of Lebesgue measure zero.

Proof

Let xs be a strict saddle point. Corollary 1 gives Φ : U → Rn as a C1 local diffeomorphism for U

a neighborhood of xs, so applying theorem 1 yields the C1 manifold Ws = W (xs). From lemma 1

we know that there is at least one eigenvalue of DΦ(xs) that is strictly larger then 1, so we conclude

that dim(Ws) < n.

For each strict saddle point xs, define Bs to be the ball given by theorem 1. Via Lindelöf’s lemma

[8], we can find a countable set of these balls such that the following holds:

∞⋃
m=1

Bsm =
⋃
s

Bs

i.e. a countable sub-cover for the union of the balls Bs. Now suppose that the iteration eq. (1.2)

converges to a strict saddle point from the starting point x(0). This implies that there exists a K

such that x(k) = Φk(x(0)) ∈ Bsm for all k ≥ K and some m ∈ N. Theorem 1 further implies that

ΦK(x(0)) ∈Ws, so it follows that x(0) ∈ Φ−K(Ws).

Now, we claim that Φ−K(Ws) has measure zero. From corollary 2 we have that Φ is injective, and

given it is also continuous, the Invariance of Domain theorem [13] guarantees that it is an open

map. Let A = Φ−1(Ws) and define the map Φ̃ : A→ Φ(A) ⊂ Ws as the restriction of Φ to A, which

is surjective by construction. Observe that A and Φ(A) are separable, because they are subsets of

Rn, and A is locally compact because it is the continuous pre-image of a disc. Theorem 2 implies

that dim(A) = dim(Φ(A)) < n. Proceeding via induction guarantees that Φ−K(Ws) has dimension

strictly less than n, and thus it has Lebesgue measure zero.

13

From here it holds that the following set has measure zero:

S =

∞⋃
m=1

∞⋃
k=0

Φ−k(Wsm)

which holds because countable unions of sets of measure zero are measure zero. The set S is precisely

the set of points in Rn that converge to a strict saddle point of the objective function f . Thus, the

result holds. ▲

The proof above uses an argument similar to [16], which is itself a generalization of the argument in

[9]. It is important, however, to point out how our approach differs. In particular, this comes in how we

show that the composed inverse map Φ−1 of the embedded disc W is measure zero. The argument used in

the aforementioned work relies on the fact that their map is a diffeomorphism, thus the inverse is locally

Lipschitz, and such maps are null-set preserving. In contrast, we used the fact that our map was injective

to apply theorem 2 (Alexandroff’s), which is an approach unique to our work. In order to prove that this

was the case in corollary 2 we used the result of lemma 2, which relied on the existence of a third continuous

derivative of f . However, in some sense our approach is more general, because if one can show lemma 2 holds

without using differentiability, then we need only assume f is C3 in a neighborhood around the saddle points

(to satisfy theorem 1). This can actually be taken a step further by noting the conditions for Alexandroff’s

theorem, which are more general than we have required. In fact, a variety of similar results can be found in

[5] and may allow for different proof strategies.

Theorem 3 implies the following corollary:

Corollary 3

Assume that the starting point x(0) is chosen according to an absolutely continuous probability

density. If the sequence of iterates (x(k)) given by the R-SFN iteration (eq. (1.2)) with step-size 1/2

converges, then this sequence converges to a second-order stationary point almost surely.

14

Proof

Let x(∞) = limk→∞ x(k) and note that it must be a critical point of f . Theorem 3 gives the Lebesgue

measure of the set of points that converge to a strict saddle point as 0. Thus the probability that

x(∞) is a strict saddle is 0, and if it is not a strict saddle it must be a second-order stationary point.

Thus we conclude that x(∞) is a second-order stationary point with probability 1. ▲

Note that we require the sequence to be convergent for this result to hold, which we have not guaran-

teed. Given the update is a descent direction, it is hopeful that some result can be established here, and that

is discussed further in chapter 4. It is also worthwhile to restate the fact that convergence to a second-order

stationary point is equivalent to convergence to a local minimizer if all of the saddle points are strict.

The main results of this section, theorem 3 and corollary 3, have required a step-size of 1/2. This

requirement ultimately stems from the bound in lemma 2, but there is a question as to whether a sharper

bound can be found. For example, in the case of a 1d or quadratic objective function, the following bound

can be shown to hold:

∥F(x)− F(y)∥ < ∥x− y∥

and thus a step-size of 1 yields the saddle avoidance results. Why it is that such a step-size is desirable is

discussed in chapter 4, and the 1d case is presented in appendix B. The quadratic case is quite simplified

by the fact that the third derivative is zero, so eq. (2.3) reduces considerably, and a similar proof to that of

lemma 2 shows the bound in question. Obviously these results do not prove it in general, but they do seem

to point toward the possibility.

Chapter 3

Efficient Computation

A major issue with Newton type methods lies in their implementation, and can effectively prevent

the practical usage of these methods. Take the standard Newton’s method; to perform an update step one

must solve a square linear system, and even with efficient solvers this can be quite costly, especially in high

dimensions. Some improvements can be made beyond the most naive approach by using a matrix free linear

solver, and by computing Hessian vector products using automatic differentiation (AD). For a saddle free

Newton method, one in which we are using the absolute value of the Hessian (or an approximation), the

problems are only exacerbated. Before one can even apply the update, one must now also perform an eigen-

decomposition of the Hessian. Not only is this expensive, but it also requires forming an explicit matrix,

which can be very memory intensive. We will see that the form of R-SFN naturally admits an efficient

implementation, or at least similarly efficient relative to standard matrix-free Newton methods.

To start, we can avoid an eigen-decomposition by using the integral form for the matrix square root

(eq. (1.3)). Applying this to the update portion of R-SFN (eq. (1.2)) we get the following:

((
H(k)

)2
+ λ(k)I

)−1/2

g(k) =
2α

π

∫ ∞

0

((
t2 + λ(k)

)
I+

(
H(k)

)2)−1

g(k) dt (3.1)

This integral can be approximated using an appropriate quadrature rule, so define the associated nodes as

ti and weights as wi, for i = 1, . . . , N . This leaves us the following:

((
H(k)

)2
+ λ(k)I

)−1/2

g(k) ≈ 2α

π

N∑
i=1

wi

((
t2i + λ(k)

)
I+

(
H(k)

)2)−1

g(k) (3.2)

It is important to note two necessary conditions the quadrature rule must satisfy. First, the rule should be

applicable to the half-open domain [0,∞), which is an obvious consideration, but important nonetheless.

16

Second, the weights wi must be positive, which is a vital requirement if the theoretical results considered

in chapter 2 have any hope of applying to this approximation. The entire motivation behind using the

matrix absolute value, or the approximation in our case, is to ensure that the update in eq. (1.2) is a descent

direction. For this to hold we need the matrix being applied to the gradient to be positive definite. The

integrand in eq. (3.1) satisfies this, but we need positive weights for our approximation (eq. (3.2)) to as well.

In general, the summand of eq. (3.2) can be computed efficiently using a Krylov subspace method. In

particular, taking inspiration from [4], we propose using the shifted CG-Lanczos method. The core result

that powers this algorithm is the fact that a Krylov subspace is shift invariant. For a linear system Ax = b,

the associated order r Krylov subspace is given as follows:

Kr(A,b) = span{b,Ab, . . . ,Ar−1b}

It can then be shown that Kr(A,b) = Kr(A+ λI,b), and although we will not state the full algorithm, this

feature means one only need construct the Krylov subspace once [6]. It can then be reused for the remaining

systems, eliminating the major computational cost from those matrix vector products. With this approach,

all N vectors in eq. (3.2) can be computed together for a minimal cost beyond doing so for a single solve.

Furthermore, with access to an operator for Hessian-vector products, this entire process can be done matrix

free. Such an operator can be easily produced via AD in any modern scientific programming language.

Putting this all together, we present an efficient algorithm for computing the R-SFN update in the

following algorithm:

Algorithm 1: R-SFN Update

Data: Objective function f , Current iterate x, Quadrature order N , Hessian Lipschitz constant M ,
Step-size α, Krylov solver tolerance τ

g← ∇f(x)
H2 ←

(
∇2f(x)

)2
// Could be a matrix-free operator

t,w← Quadrature(N) // Compute quadrature nodes and weights

si ← t2i + λ // Compute shifts, agnostic to form of λ

Y ← ShiftedKrylov(H2,g, s, τ) // Compute solutions to linear systems

for i = 1 : N do
x = x− αwiYi

end

17

In practice, this algorithm can be optimized in a number of ways. For example, the quadrature need

only be computed once, and then it can be reused for the remaining updates. The main computational

cost comes from solving the family of linear systems, and in particular, from the associated Hessian-vector

products used to form the Krylov subspace. To be more precise, the operation in question is actually applying

the Hessian squared to a vector. Thus, there are 2(r−1) of these operations, where r is the size of the Krylov

subspace. When the operator is constructed using AD, each application of the Hessian requires two passes

of the function using some combination of forward and reverse mode. We will not dive into the details of

AD and its most efficient application here, but the result is a O(r) dependence of the algorithm on the size

of the Krylov subspace. The cost of a single application of the Hessian operator is of course very dependent

on the cost of evaluating the objective function in question.

3.1 Numerical Experiments

Our goal in this section is to present a proof-of-concept for R-SFN as a practical saddle-free Newton

type method for optimization. To that end, we will explore its efficiency and its convergence, although we

will only do so in a limited capacity. Certainly there is more to be investigated, and that will be discussed

as future work in chapter 4.

The following experiments were conducted in the Julia programming language, the code for which can

be found in the GitHub repository [20]. We use the Gauss-Laguerre quadrature rule as it is easily accessible,

applicable to the non-negative real line, and, importantly, it has positive weights. Our shifted CG-Lanczos

Krylov solver is provided by [12] from the Julia Smooth Optimizers organization, where we use a matrix free

operator for Hessian-vector products generated via mixed forward over backward AD. We note that in all of

our experiments a step-size of 1/2 is used for R-SFN, and a step-size of 1 is used for Newton’s method unless

otherwise specified. Lastly, the regularization is computed according to the theory provided in section 2.2,

the form of which is given by assumption 3. In particular, we recall that M is the Hessian Lipschitz constant,

as this will be an important parameter considered in our experiments.

18

3.1.1 Efficiency

Here, we consider the execution time and memory consumption for a single update step of the form

eq. (1.4). We use a synthetic binary logistic regression problem, where we vary the number of features,

and use 10 times that many observations. We compare the standard Newton’s method, saddle-free Newton

(SFN), and R-SFN. For all methods we use automatic differentiation (AD), but in different ways. For R-SFN

and Newton’s method we use it to construct a matrix free operator, but for SFN we use it to construct the

full Hessian so that we can perform an eigen-decomposition. We will point out that this problem admits

an analytic form for the Hessian that we could have used for Newton’s method and SFN. Indeed, doing so

would improve the performance of those approaches, at least for smaller problems, but it is more realistic to

expect one will not have access to such an analytic form in general.

(a) Update step run time (b) Update step memory consumption

Figure 3.1: Comparison of execution time and memory consumption for Newton type methods.

The most immediate observation one may make is that the choice of M has a large impact on the

run-time performance of R-SFN. It is somewhat unclear why this is, but a possible explanation is that

regularization plays a large role in the solvability of the linear systems. In the Krylov solver we are asking

for a high degree of accuracy, so with no regularization (i.e. M = 0) it is possible this is much harder to

obtain. In the case of non-zero regularization, we see that R-SFN performs at least an order of magnitude

better than SFN in both metrics. This is notable because with zero regularization, R-SFN and SFN are

essentially the same method, differing only in how the update step is computed. It should also be noted that

19

the problem dimensions we are considering here are not necessarily that large, so stronger differences may

be noted in other regimes.

3.1.2 Convergence

Here, we consider a similar experiment to that of [15]. The d-dimensional Rosenbrock function is a

non-convex function often used for benchmarking, and is given as follows:

f(x) =

d−1∑
i=1

100(xi+1 − x2
i)

2 + (1− xi)
2

It has a global minimum of 0 which is achieved by the unique minimizer 1. This problem does not have

a Lipschitz Hessian, so we pick two values for M in our experiments, and we use the maximum number of

quadrature nodes (197) that can be computed under machine precision using Gauss-Laguerre. We start at

the initial point x(0) = 0 and apply R-SFN, with Newton’s method serving as a comparison.

(a) 10-dimensional (b) 100-dimensional

Figure 3.2: Minimization of Rosenbrock function.

In the 10-dimensional case we see that Newton’s method exhibits some erratic behaviour at the

beginning, but quickly converges to the minimum. Both versions of R-SFN also converge to the minimum,

but do so in much more of a steady manner. Without regularization, i.e. M = 0, we see R-SFN does briefly

increase the function, but with sufficient regularization R-SFN appears to always descend, albeit at a slower

rate. This perhaps points towards regularization also being necessary for convergence, but in a trade-off with

speed. In the 100-dimensional case we can see that R-SFN actually outperforms Newton’s method. This is

20

likely due to the smaller step-size, without which Newton’s method does not converge. Again, we also see

that less regularization results in faster convergence.

Chapter 4

Discussion

In this work we have presented a new second-order optimization scheme which we call regularized

saddle-free Newton (R-SFN). Under mild assumptions, we showed that this method almost surely avoids

saddle points. We also presented an efficient implementation of the method which allows for fast matrix-free

updates. Much recent work has been carried out towards developing Newton type methods that avoid saddle

points, yield strong global convergence, or can be easily applied in practice. We view R-SFN as a strong

step towards combining all of these features. Perhaps more than anything, the work presented here points

towards many promising directions for further investigation.

The step-size of 1/2 required for the saddle avoidance results may initially appear sub-optimal, but

it is unclear if that is the case. In the standard Newton’s method, a step-size of 1 is the ideal quantity, and

smaller steps are introduced only to guarantee convergence results. However, our method isn’t derived in the

same way, so the importance of a unit step-size is somewhat unclear. One reason that it may be desirable

stems from the Dennis-Moré condition for local super-linear convergence [14], although it is certainly possible

a global convergence result could still be shown regardless. The fact that it is a constant is really a key

feature, as no added computation is required. If the objective were convex, the steps with step-size 1 would

actually be larger than that of regularized Newton. In the end, what really matters is the effect of the

step-size on convergence, and its associated rate. This leads to the two most significant open questions:

can a global guarantee of convergence to a critical point can be obtained, and can a rate of convergence be

obtained?

Many questions are raised on the implementation side of things. In particular, how do the approxima-

22

tions due to the quadrature and Krylov solutions impact the theory? What is even the best quadrature rule

to use? Often in practice, especially in machine learning regimes, we use mini-batches of data. This results

in sub-sampled derivative information, which introduces yet another source of randomness that must be

integrated into the analysis. It is also unlikely that one would have access to the Hessian Lipschitz constant.

Thus, an appropriate line search procedure would be needed for a general algorithm. Even with all of this

in hand, to really understand R-SFN, many more numerical experiments are needed.

Bibliography

[1] M. Arjovsky, Saddle-free hessian-free optimization, arXiv preprint arXiv:1506.00059, (2015).

[2] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y. Bengio, Identifying and
attacking the saddle point problem in high-dimensional non-convex optimization, Advances in neural
information processing systems, 27 (2014).

[3] N. Doikov and Y. Nesterov, Gradient regularization of newton method with bregman distances,
arXiv preprint arXiv:2112.02952, (2021).

[4] J.-P. Dussault and D. Orban, Scalable adaptive cubic regularization methods, arXiv preprint
arXiv:2103.16659, (2021).

[5] R. Engelking, ed., Dimension Theory of Separable Metric Spaces, vol. 19, PWN-Polish Scientific
Publishers - Warszawa, 1979.

[6] A. Frommer and P. Maass, Fast cg-based methods for tikhonov–phillips regularization, SIAM Jour-
nal on Scientific Computing, 20 (1999), pp. 1831–1850.

[7] N. J. Higham, Functions of matrices: theory and computation, SIAM, 2008.

[8] J. L. Kelley, General Topology, Springer, 1955.

[9] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht, Gradient descent only converges to
minimizers, in Conference on learning theory, PMLR, 2016, pp. 1246–1257.

[10] J. R. Magnus and H. Neudecker, Matrix Differential Calculus with Applications in Statistics and
Econometrics, John Wiley & Sons, 2019.

[11] K. Mishchenko, Regularized newton method with global o(1/k2) convergence, arXiv preprint
arXiv:2112.02089, (2021).

[12] A. Montoison, D. Orban, and contributors, Krylov.jl: A Julia basket of hand-picked Krylov
methods. https://github.com/JuliaSmoothOptimizers/Krylov.jl, June 2020.

[13] J. R. Munkres, Elements of algebraic topology, CRC press, 2018.

[14] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, 2e ed., 2006.

[15] T. O’Leary-Roseberry, N. Alger, and O. Ghattas, Low rank saddle free newton: A scalable
method for stochastic nonconvex optimization, arXiv preprint arXiv:2002.02881, (2020).

[16] I. Panageas and G. Piliouras, Gradient descent only converges to minimizers: Non-isolated critical
points and invariant regions, in 8th Innovations in Theoretical Computer Science Conference (ITCS
2017), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

24

[17] S. Paternain, A. Mokhtari, and A. Ribeiro, A newton-based method for nonconvex optimization
with fast evasion of saddle points, SIAM Journal on Optimization, 29 (2019), pp. 343–368.

[18] A. Rainer, Perturbation theory for normal operators, Transactions of the American Mathematical
Society, 365 (2013), pp. 5545–5577.

[19] M. Shub, Global Stability of Dynamical Systems, Springer, 1987.

[20] C. Simpson, R-SFN. https://github.com/RS-Coop/R-SFN, 2022. A Julia implementation of the
regularized saddle-free Newton method.

[21] M. Spivak, Calculus On Manifolds, Addison-Wesley, 1965.

[22] T. T. Truong, T. D. To, T. H. Nguyen, T. H. Nguyen, H. P. Nguyen, and M. Helmy,
A fast and simple modification of newton’s method helping to avoid saddle points, arXiv preprint
arXiv:2006.01512, (2020).

https://github.com/RS-Coop/R-SFN

Appendix A

Matrix Derivative Results

We will show the following result [10, exercise 9.14.6] holds for A(x) ∈ Rm×p, B(x) ∈ Rp×r, and

x ∈ Rn:

∂

∂xT

[
A(x)B(x)

]
=

(
B(x)T ⊗ Im

)∂vec(A(x)
)

∂xT
+

(
Ir ⊗A(x)

)∂vec(B(x)
)

∂xT

where the subscript on the identity indicates its size.

Proof

We begin by computing the differential of A(x)B(x):

∂
(
A(x)B(x)

)
= ∂

(
A(x)

)
B(x) +A(x)∂

(
B(x)

)
Then apply the vec operator to get the following result:

vec
(
A(x)B(x)

)
=

(
B(x)T ⊗ Im

)
∂vec

(
A(x)

)
+

(
Ir ⊗A(x)

)
∂vec

(
B(x)

)
From here we simply read of the result. ▲

With T = (t2 + λ)I +H2 and λ as in assumption 3 we will show the following:

(
gT ⊗ I

)∂vec(T−1)

∂xT
= −cT−2ggTH−

(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT

where c = 2M∥g∥−1:

26

Proof

We start with the following differentials:

∂vec(T−1) = −
(
T−1 ⊗T−1

)
∂vec(T)

∂vec(T) = ∂vec(λI) + ∂vec
(
H2

)
= ∂vec(λI) +

(
H⊗ I+ I⊗H

)
∂vec(H)

Putting these together then implies the result below:

∂vec(T−1)

∂xT
= −

(
T−1 ⊗T−1

) ∂λI
∂xT

+
(
T−1H⊗T−1 +T−1 ⊗T−1H

)∂vec(H)

∂xT

Multiplying through by
(
gT ⊗ I

)
gives the last term of the result in question. Next, we note the

following: (
gT ⊗ I

)(
T−1 ⊗T−1

)
=

[(
gTT−1

1 T−1
)
· · ·

(
gTT−1

n T−1
)]

∂vec(λI)

∂xT
=

[
cgTH 0 · · · 0 cgTH 0 · · · 0 cgTH

]T

where the subscript on T indicates the column. The i, j element of their product is given by the

following expression:

c

n∑
k=1

(
gTT−1

)
k
T−1

ik

(
gTH

)
j
= c

(
T−1T−1ggTH

)
ij

Thus we see that the result holds. ▲

We will show the following:

∥
(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
∥ < µλ

(µ2 + t2 + λ)(µmin + t2 + λ)

where µ is defined as follows:

µ = max
µi

µi

µ2
i + t2 + λ

Proof

We first note that T−1 ⊗T−1H and T−1H⊗T−1 have eigenvalues of the following form:

µi

(µ2
i + t2 + λ)(µ2

j + t2 + λ)
≤ µ

(µ2 + t2 + λ)(µ2
min + t2 + λ)

which is a well known property of Kronecker products [10]). Note that the eigenvalue µ is defined as

27

above. We can then write the following:

∥
(
gTT−1H⊗T−1 + gTT−1 ⊗T−1H

)∂vec(H)

∂xT
∥ < µ2M ||g||

(µ2 + t2 + λ)(µmin + t2 + λ)

which follows because the norm of ∂vec(H)
∂xT is bounded above by M due to assumption 1. Recognizing

λ− ϵ in the numerator gives the final result. ▲

Appendix B

1d Lipschitz Bound

We will show that for a 1d objective function, the following holds for all x, y ∈ R:

∥F (x)− F (y)∥ < ∥x− y∥

where F =
(
(f ′′)2 + λ

)−1/2
f ′ is defined in eq. (2.2).

Proof

Our approach will be to bound the derivative of F , so to that end we write the following:

d

dx
F =

f ′′(
(f ′′)2 + λ

)1/2 − f ′ · (2f ′′f ′′′ + λ′)

2
(
(f ′′)2 + λ

)3/2
Combining the two fractions yields the following:

d

dx
F =

2(f ′′)3 + 2λf ′′ − 2f ′f ′′f ′′′ − λ′f ′

2
(
(f ′′)2 + λ

)3/2
In this setting we have λ = 2M |f ′| + ϵ, so this gives λ′ = 2Msign(f ′)f ′′. Plugging this into the

equation above and recognizing that sign(f ′)f ′ = |f ′| results in the following:

d

dx
F =

2(f ′′)3 + (2M |f ′|+ 2ϵ)f ′′ − 2f ′f ′′f ′′′

2
(
(f ′′)2 + λ

)3/2
From here, we take the absolute value, apply the triangle inequality and simplify:

∣∣∣ d
dx

F
∣∣∣ < |f ′′| |f

′′|2 + 2M |f ′|+ ϵ(
(f ′′)2 + λ

)3/2 =
|f ′′|(

(f ′′)2 + λ
)1/2 ≤ 1

where we have also used the fact that |f ′′′| ≤M (by assumption) for the inequality, and the form of

λ for the equality. Thus, the result holds. ▲

	Introduction
	A Motivating Example
	Related Work

	Analysis
	Preliminaries
	Saddle Avoidance

	Efficient Computation
	Numerical Experiments
	Efficiency
	Convergence

	Discussion
	 Bibliography
	Matrix Derivative Results
	1d Lipschitz Bound

