COOPER SIMPSON

Computational and Mathematical Scientist

🔀 simpson.r.cooper@gmail.com 💡 Boulder, CO

November 29, 2023

EDUCATION

Applied Mathematics M.S.

University of Colorado Boulder

2020 - 2022

@ GPA: 3.863

Thesis: Second-Order Non-Convex Optimization

Advisor: Stephen Becker

Applied Mathematics B.S.

University of Colorado Boulder

2017 - 2020

GPA: 3.933

Minor: Computer Science

Deep Learning Optimization Functional Analysis (Complex Analysis) Differential Eqs. (Machine Learning) Linear Algebra

Probability (Statistics) (Algorithms) (Numerics) (Algorithmic Economics

WORK & RESEARCH EXPERIENCE

Professional Research Assistant

Aerospace Mechanics Research Center

Q CU. Boulder

- · Investigating compression techniques, e.g. autoencoding neural networks, for large-scale scientific simulations
- Developing QuadConv, a quadrature-based convolution operator for use in deep learning on non-uniform meshes
- Working with supercomputer systems through Argonne Leadership Computing Facility (Polaris & Theta) and CU Boulder (Alpine & Blanca)

Development Intern

Electro Magnetic Applications (EMA3D)

June-Aug 2021

Denver, CO

- Developed production software for Charge and Cable electromagnetic simulation tools
- Implemented generalized barycentric interpolation for arbitrary convex polyhedra
- Built post-processing functionality for complex unstructured 3D meshes

Research Assistant

Correll Robotics Lab

iii Dec 2018-May 2021

OCU, Boulder

- Aided in the development of nn4mc, a software package which facilitates embedding complex neural networks on microcontrollers
- Investigated methods and tools for embedding complex distributed robotic behaviour through compiled high level primitives

Visiting Research Assistant

University of Southern California: ANRG

May-Aug 2020

Remote

- Participated in the Robotics and Autonomous Systems Research Experience for Undergraduates
- Conducted research with professor Bhaskar Krishnamachari on a drift-plus-penalty inspired method for constrained robotic resource collection in a stochastic environment.

TEACHING EXPERIENCE

Various duties which included teaching recitations, running office hours, developing course materials, grading, and more.

Lecturer

Department of Applied Mathematics

Q CU. Boulder

APPM 4720/5720 Applied Deep Learning 1

= Fall 2023

Graduate Teaching Assistant

Department of Applied Mathematics

Q CU, Boulder

APPM 2360 Differential Equations with Linear Algebra

苗 Fall 2021 ## Fall 2020

• APPM 1350 Calculus 1 for Engineers

Undergradute Course Assistant

APPM 3570 Applied Probability

Q CU, Boulder **苗** Fall 2019

Fall 2018

• CSCI 2360 Computer Science 2: Data Structures CSCI 1300 Computer Science 1: Starting Computing

College of Engineering

PROJECTS & PUBLICATIONS

Regularized Saddle-Free Newton Master's Thesis, Independent

R-SFN is a novel second-order Newton-type method for non-convex optimization. A non-linear transformation to the Hessian ensures global convergence to second-order stationary points and an efficient matrix-free implementation.

- Cooper Simpson and Stephen Becker. Regularized Saddle-Free Newton: Saddle Avoidance and Efficient Implementation. 2023. URL: https://rs-coop.github.io/projects/research/rsfn
- Cooper Simpson. "Regularized Saddle-Free Newton: Saddle Avoidance and Efficient Implementation". M.S. Thesis. Dept. of Applied Mathematics, CU Boulder, 2022. URL: https://rs-coop.github.io/projects/research/rsfn

Quadrature-Based Convolutions **CU Research**

QuadConv is a quadrature-based discrete convolution operator for use in training deep neural networks on non-uniform data.

 Kevin Doherty, Cooper Simpson, et al. "QuadConv: Quadrature-Based Convolutions with Applications to Non-Uniform PDE Data Compression". In: Journal of Computational Physics (2023). DOI: 10.1016/j.jcp.2023.112636

Exchange Economy Dynamics Independent

Work towards generalizing the proportional response dynamic to graphical exchange economies with arbitrary network structure and endowments.

 Cooper Simpson. Generalizing the Proportional Response Dynamic for Exchange Economies. 2023. URL: https://rs-coop.github.io/projects/research/prd

Neural Networks for Microcontrollers Correll Robotics Lab

Software packages for translating trained neural networks into C code for use in embedded systems.

• S. Aguasvivas, D. Hughes, C. Simpson, et al. "Embedded Neural Networks for Robot Autonomy". In: Robotics Research. Cham: Springer International Publishing, 2022, pp. 242-257. DOI: 10.1007/978-3-030-95459-8_15

SOFTWARE

SFN Lead

A Julia package for non-convex Newton-type optimization algorithms.

PyTorch-QuadConv Co-Lead Quadrature-based convolutions for deep learning in PyTorch.

A Julia package for randomized methods in numerical linear algebra.

nn4mc Co-Lead Python and C++ packages for translating trained neural networks into C code for use in embedded systems.

A PyTorch implementation of the Adaptive Regularization with Cubics optimization algorithm.

ACHIEVEMENTS

PyTorch-ARC Co-Lead

Solidworks Associate

CRA Honorable Mention

Certified with a perfect score on the CSWA exam in May 2019.

2020 Computing Research Association Outstanding Undergraduate Researcher.

SKILLS

Python PyTorch Julia C++ C# C LaTex Linux Git HPC CAD

ANGUAGES

German: Conversational